

Optical freespace communication (OFC) with POF feeder lines

Hans Kragl

DieMount GmbH Giesserweg 3 38855 Wernigerode

www.diemount.com

FGT 5.4.1 Meeting, Oldenburg, May 12th, 2006

- 1. Broadband data access for everybody?
- 2. Optical freespace communication (OFC)
- 3. Idea: from POF simplex to OFC simplex with POF feeder line
- 4. Technical approaches
 - simplex OFC systems
 - duplex OFC systems
- 5. Comparison: Simplex and duplex OFC systems
- 6. Next steps

Telecom operators will introduce broadband access networks first:

- for well funded customers,
- at places with a high customer density (large cities),
- a high number of customers per access line (multiple dwelling units).

I.e., customers:

- outside economic centers (from rural regions in Europe to developing countries),
- living in small villages and
- living in single-family houses

will be served with broadband access at last.

Optical freespace communication systems allow

- to bridge up to 8km transmission distance (@1.55µm wavelength),
- provide high bandwidth (2.5Gbit/s and more),
- don't require licences,
- offer easy installation,
- offer reliabilities of more than 99%, if system margin sufficiently high.

But:

Commercially available systems today cost 4 000 to more than 25 000 Euro. This price is too high for:

- private persons, i.e. not professional applications and
- developing countries.

Idea:

Is it possible to use low cost POF mediaconverters for optical freespace communication?

Idea: from POF simplex to OFC simplex

- optical header comprises passive optics,
- POF serves as feeder line to optical header,
- installation very easy, because one optical axis only,
- visible light (650nm) allows to find focus and install by "eye",
- anti reflection at POF endface easily feasible.

Cost:

A standard simplex media converter set + a fresnell lens in the optical header.

OFC test systems with POF feeder line

d = 18mmØ, f = 30mm, D = 1m **App.: rotary data joints**

d = 45mmØ, f = 150mm, D = 6m
App.: drag
chain links

d = 390mmØ, f = 270mm, D = 100 - 150m **App.: house to house link**

Physical aspects of "POF-Simplex OFC"

- The POF NA (0.5) fixes the relation of focal length and lens diameter to 1.15. Smaller lenses cause losses, larger lenses are useless.
- The lens focal length f and the large POF diameter of 1mm define ray divergence to: arctan(1mm/ f [mm]).

Consequences:

- large lenses are necessary for long distances (small ray divergence)
- large, but low cost lenses are fresnell lenses
- fresnell have limited optical quality.

With a power budget of 14dB (standard simplex POF system) simplex POF OFC systems allow to bridge up to 150m maximum only.

d = 260mm x 260mm, f = 200mm, available low cost Fresnell lens

Transmission distance: 50m (+x?) with a LED based 14dB power budget simplex system

Alignment procedure:

Duplex POF OFC systems overcome the problem of large, high quality lenses due to tiny laser radiation apertures.

But they require:

- an active optical header comprising a laser diode,
- the alignment of two optical axis,
- 2 feeder cables: POF (receiver) and coax (data laser driver).

Long term stability aspect:

Novel 650nm EELD promise a MTTF of 100 000 h (10 years).

Failure:= 20% loss of optical power.

Transmission distance: >300m with a 650nm EELD based 30dB power budget duplex system

Alignment procedure:

Installation: POF duplex system

First OFC installation at asphericon GmbH, Jena.

The link is used to bridge an about 100m long public place between two company buildings.

Comparison:

System:	Light source:	Relia- bility:	Installation:	Transmission distance:
Simplex f=200mm	red 650nm LED	high	very easy	50m
Simplex f=200mm	780nm VCSEL	high	medium	100m
Duplex f=200mm	650nm EELD	? 100 ⁻ 000h MTTF (?)	medium to easy	>300m (up to 1km?)
Simplex f=200mm	650nm EELD	? 100 ⁻ 000h MTTF (?)	very easy	>150m (?)

An EELD based simplex OFC system promises:

- very easy installation,
- a completely passive optical header that allows to place, active electronics far away from the header,
- an estimated maximum transmission distance of >150m,
- a very affordable price due to POF media converter technology,
- upgrade from Fast Ethernet to Gb/s Ethenet no serious problem (first Gb/s POF transceivers?).

Next steps:

- Design an optical simplex transceiver comprising EELD.
- Start of long term life tests.
- Use demountable LD-modules to overcome the potential (!?) problem with limited EELD lifetime.